


CS 4530: Fundamentals of Software Engineering
Module 3, Lesson 2
Architecting Simple Web Servers

Rob Simmons
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license


https://creativecommons.org/licenses/by-sa/4.0/

277

B %% @ & @ & =

e C

O E] 52 https://developers.google.com/solutions/content-driven/backend/farchitecture

Google for Developers Q, Search / @ Language ~ :
r 1
- ® Page info i
= Filter Home Was this helpful? @ 9 g 00X
Info
» Content-Driven Web A
ontentEven e Apps & Monolithic Architectures
> Backend =+
Overview = Suggested Usage
Architecture Chat Serverless Architectures

Event-based serverless
architectures

Frameworks and Languages BaCkend ArCh iteCtu res
resting for content-driven web X

Scaling APl

app backends o -

Containerization

Microservice Architectures

On this page v
Monolithic Architectures

Suggested Usage
Serverless Architectures
Event-based serverless architectures
Containerization

Microservice Architectures

web application backends

Learn more about backend architectures for content-

Comparison of different architectures for content-driven

Performance

Comparison of different
Deployment architectures for content-
Security driven web application

backends

Learn more about backend
architectures for content-
driven web applications

Key Takeaways

4 AI-GENERATED

« Content-driven web applications can




Learning Goals for this Lesson

At the end of this lesson, you should be able to

* Explain what “business logic” is

* Describe the fundamental differences between the
three layers of the controller, service, and repository
layers in a C-S-R architecture

* Explain the difference between “horizontal” and
“vertical” scaling

* Know what someone is talking about when they say
“microservices”



ThlS example iS S|”y numLogins resets

whenever you stop

import express from 'express’; running the program

import {z } from 'zod’;

type UserAuth = z.infer<typeof zUserAuth>;
const zUserAuth = z.object({
username: z.string(),
password: z.string(),
ik
let numLogins = 0;
const app = express();
app.use(express.json());
app.post('/api/user/login', (request, response) => {
const { username, password }: UserAuth = zUserAuth.parse(re t.body);
if (username.toLowerCase() === "userl' && password === 'sekret’') {
response.send({ success: true, numLogins: numLogins++});
} else {
response.send({ error: 'Invalid username or password' });

}
N;

there’s one user and one

password and it’s hard-
coded




State and statelessness

* Web applications have state: they’re ultimately storing or

modifying something

e Otherwise, maybe don’t have a server running Node at all?

* Content Delivery Networks have put tons of work into solving
that distributed systems problem.

e Static sites are fast & cheap

https://en.wikipedia.org/wiki/Content_delivery_network



State and statelessness

* A web server or web service should be stateless

* Every REST request should be indifferent to whether the node
application has been running for several hours or five seconds

* Oursilly application, and the IP1 code, is not stateless (why?)

* If the web server is going to be stateless, and the web
application has state, the server has to phone a friend:
* Access the filesystem
* Query a database
* |Initiate some other remote procedure call to another server

e Common case: a database is the point of centralization

* Centralization (& hierarchical centralization) is a cheat code for
making distributed systems managable



Three parts of a web server

* The repository is the only part that stores state
* | think it would be clearer if we called it the “database” tbh

* The service doesn’t know how we connect to the client

e HTTP? REST? WebSockets? The service shouldn’t know!

e The controller doesn’t know how we store data

* Are we actually stateless, or storing things in memory?

* MongoDB? PostgresQL? SQLite? A file on the hard drive?

Repository Service

Controller

Client

User




Service interface

import {
StudentlID,
Student,
Course,
CourseGrade,
Transcript,

} from './types.ts’;

export interface StudentService {
addStudent(studentName: string): Student;
getTranscript(id: Student): Transcript;
deleteStudent(id: Student): void;
addGrade(id: Student, course: string, courseGrade: CourseGrade): void;
getGrade(id: Student, course: string): CourseGrade;
populateNames (studentName: string): Student[];



Service interface

* Everything we saw from the transcript server is the
business logic — the most boring name possible for
“the interesting stuff that a web server does that
isn’t just reading from a database”

* “Is this person an authenticated user?” — usually not
business logic

e “Does this user have permission to access student
records” — business logic!

* “Do new grades go at the front or back of the list” —
business logic!



Testing

* We can test at both the service layer and the
controller layer
 What are the pros and cons of each?

* Sometimes we’ll want to test the service layer
and/or controller layer without the repository
layer!

* We’ll come back to this.



Web Applications are Distributed Systems

Distributed systems are hard!

* Web applications are designed to only be kinda
difficult-to-build distributed systems

* Most of this lecture is bad advice if you’re Google,
Netflix, or Amazon

Web applications are distributed systems because
1. You don’t live in the cloud
2. Scalability: Netflix needs at least two computers

12



Scaling & the database bottleneck

* Web services often start on a single computer

 Stateless web servers make it possible to
horizontally scale your web service as you get more
users: add more cheap stateless web servers!

 AWS will be delighted to help, only real limit is money

* Centralized databases tend towards vertical scaling:
move your database to a more powerful computer

e This has limits



Scaling & the database bottleneck

* Most applications want to do expensive but
periodic data analysis on the database

e Database read-only-replicas are an easy solution
here — seconds to minutes behind reality (and can
add reliability in case of failure!)



Scaling & the database bottleneck

* If you’ve got a bunch of data (or computation) that
can handled separately and independently, you can
put that somewhere else and have two
independent databases

* Chat and game information could be in separate
places

* Games could have their business logic running on
different servers, written in different programming
languages, and accessed (by the server the client is
connected to) through their own REST API!

* This way lies microservices



Microservices

Different langunanes,
differewt operating
systems

_> NodeJSi MonﬁoDB Google Service Java, MySQL
| ./

REST service REST service REST service

Productivity App

Database

Database Database

Frontend

Social Crawler

“Dumb” Search Engine Analytics
App Server

REST service REST service REST service

Database

Database Database

Java, Neo4) C#, SQLServer Python, MongoDB



Microservices

Netflix is the microservices darling
100s of microservices Netflix architecture
1000s of daily production changes
10,000s of instances

BUT:

only 10s of operations engineers

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b



https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Microservices

The opposite of “microservices” is “monolith”

for less-complex systems, the extra
baggage required to manage
microservices reduces productivity

as complexity kicks in,
productivity starts falling

higher is better
rapidly

the decreased coupling of
microservices reduces the
attenuation of productivity

Productivity
Microservice

Monolith

Base Complexity

but remember the skill of the team will
outweigh any monolith/microservice choice

https://martinfowler.com/microservices/



https://martinfowler.com/microservices/

Review

* Strategy.town is a monolithic application

* Personal self-assessment: | put a bit too much business
logic in the controller layer (service layer doesn’t quite
do enough)

* You’ll start IP2 with a proper repository
* MongoDB is the database used for repository layer
e Starter code mostly stateless, you’ll make it fully stateless

* The controller doesn’t have to change!*

*we’ll talk about one very big exception tomorrow



Review

At the end of this lesson, you should be able to

* Explain what “business logic” is

* Describe the fundamental differences between the
three layers of the controller, service, and repository
layers in a C-S-R architecture

* Explain the difference between “horizontal” and
“vertical” scaling

* Know what someone is talking about when they say
“microservices”



Learning objectives for this lesson

* By the end of this lesson, you should be able to...

* Explain what made single-threaded web servers an
attractive alternative to connection-pool-based web
servers

* |dentify a few pitfalls of writing single-threaded
applications with cooperative concurrency

* Understand the difference between programming with
callbacks, “classic” promises, and async/await

* Look at code diffs on GitHub and glean insights



	Slide 1
	Slide 2: CS 4530: Fundamentals of Software Engineering Module 3, Lesson 2 Architecting Simple Web Servers
	Slide 3: ???
	Slide 4: Learning Goals for this Lesson
	Slide 5: This example is silly
	Slide 6: State and statelessness
	Slide 7: State and statelessness
	Slide 8: Three parts of a web server
	Slide 9: Service interface
	Slide 10: Service interface
	Slide 11: Testing
	Slide 12: Web Applications are Distributed Systems
	Slide 13: Scaling & the database bottleneck
	Slide 14: Scaling & the database bottleneck
	Slide 15: Scaling & the database bottleneck
	Slide 16: Microservices
	Slide 17: Microservices
	Slide 18: Microservices
	Slide 19: Review
	Slide 20: Review
	Slide 21: Learning objectives for this lesson

