

CC BY-SA

© 2025 Released under the CC BY-SA license

2

CS 4530: Fundamentals of Software Engineering
Module 3, Lesson 2
Architecting Simple Web Servers

Rob Simmons

Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

3

???

Learning Goals for this Lesson

At the end of this lesson, you should be able to
• Explain what “business logic” is

• Describe the fundamental differences between the
three layers of the controller, service, and repository
layers in a C-S-R architecture

• Explain the difference between “horizontal” and
“vertical” scaling

• Know what someone is talking about when they say
“microservices”

4

5

This example is silly
import express from 'express’;

import { z } from 'zod’;

type UserAuth = z.infer<typeof zUserAuth>;

const zUserAuth = z.object({

 username: z.string(),

 password: z.string(),

});

let numLogins = 0;

const app = express();

app.use(express.json());

app.post('/api/user/login', (request, response) => {

 const { username, password }: UserAuth = zUserAuth.parse(request.body);

 if (username.toLowerCase() === 'user1' && password === 'sekret') {

 response.send({ success: true, numLogins: numLogins++});

 } else {

 response.send({ error: 'Invalid username or password' });

 }

});

numLogins resets
whenever you stop
running the program

there’s one user and one
password and it’s hard-
coded

State and statelessness

• Web applications have state: they’re ultimately storing or
modifying something
• Otherwise, maybe don’t have a server running Node at all?

• Content Delivery Networks have put tons of work into solving
that distributed systems problem.

• Static sites are fast & cheap

https://en.wikipedia.org/wiki/Content_delivery_network

State and statelessness

• A web server or web service should be stateless
• Every REST request should be indifferent to whether the node

application has been running for several hours or five seconds

• Our silly application, and the IP1 code, is not stateless (why?)

• If the web server is going to be stateless, and the web
application has state, the server has to phone a friend:
• Access the filesystem

• Query a database

• Initiate some other remote procedure call to another server

• Common case: a database is the point of centralization
• Centralization (& hierarchical centralization) is a cheat code for

making distributed systems managable

Three parts of a web server

• The repository is the only part that stores state
• I think it would be clearer if we called it the “database” tbh

• The service doesn’t know how we connect to the client
• HTTP? REST? WebSockets? The service shouldn’t know!

• The controller doesn’t know how we store data
• Are we actually stateless, or storing things in memory?

• MongoDB? PostgresQL? SQLite? A file on the hard drive?

Client browser UserinternetControllerAPIServiceRepository API

Service interface

import {

 StudentID,

 Student,

 Course,

 CourseGrade,

 Transcript,

} from './types.ts';

export interface StudentService {

 addStudent(studentName: string): Student;

 getTranscript(id: Student): Transcript;

 deleteStudent(id: Student): void;

 addGrade(id: Student, course: string, courseGrade: CourseGrade): void;

 getGrade(id: Student, course: string): CourseGrade;

 populateNames (studentName: string): Student[];

}

Service interface

• Everything we saw from the transcript server is the
business logic — the most boring name possible for
“the interesting stuff that a web server does that
isn’t just reading from a database”
• “Is this person an authenticated user?” — usually not

business logic

• “Does this user have permission to access student
records” — business logic!

• “Do new grades go at the front or back of the list” —
business logic!

Testing

• We can test at both the service layer and the
controller layer
• What are the pros and cons of each?

• Sometimes we’ll want to test the service layer
and/or controller layer without the repository
layer!
• We’ll come back to this.

Web Applications are Distributed Systems

Distributed systems are hard!

• Web applications are designed to only be kinda
difficult-to-build distributed systems

• Most of this lecture is bad advice if you’re Google,
Netflix, or Amazon

Web applications are distributed systems because

1. You don’t live in the cloud

2. Scalability: Netflix needs at least two computers

12

Scaling & the database bottleneck

• Web services often start on a single computer

• Stateless web servers make it possible to
horizontally scale your web service as you get more
users: add more cheap stateless web servers!
• AWS will be delighted to help, only real limit is money

• Centralized databases tend towards vertical scaling:
move your database to a more powerful computer
• This has limits

Scaling & the database bottleneck

• Most applications want to do expensive but
periodic data analysis on the database

• Database read-only-replicas are an easy solution
here — seconds to minutes behind reality (and can
add reliability in case of failure!)

Scaling & the database bottleneck

• If you’ve got a bunch of data (or computation) that
can handled separately and independently, you can
put that somewhere else and have two
independent databases
• Chat and game information could be in separate

places

• Games could have their business logic running on
different servers, written in different programming
languages, and accessed (by the server the client is
connected to) through their own REST API!

• This way lies microservices

Microservices

Productivity App

Frontend

“Dumb”
App Server

Mod 1

REST service

Database

Mod 2

REST service

Database

Mod 3

REST service

Database

Mod 4

REST service

Database

Mod 5

REST service

Database

Mod 6

REST service

Database

REST

Todos
NodeJS, MongoDB

Mailer

Java, MySQL

Logins

Google Service

Search Engine

Java, Neo4J

Analytics

C#, SQLServer

Social Crawler

Python, MongoDB

Different languages,

different operating

systems

Microservices

Netflix is the microservices darling
• 100s of microservices

• 1000s of daily production changes

• 10,000s of instances

• BUT:

• only 10s of operations engineers

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-
every-time-you-hit-play-3a40c9be254b

https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b
https://medium.com/refraction-tech-everything/how-netflix-works-the-hugely-simplified-complex-stuff-that-happens-every-time-you-hit-play-3a40c9be254b

Microservices

The opposite of “microservices” is “monolith”

higher is better

https://martinfowler.com/microservices/

https://martinfowler.com/microservices/

Review

• Strategy.town is a monolithic application

• Personal self-assessment: I put a bit too much business
logic in the controller layer (service layer doesn’t quite
do enough)

• You’ll start IP2 with a proper repository
• MongoDB is the database used for repository layer

• Starter code mostly stateless, you’ll make it fully stateless

• The controller doesn’t have to change!*

*we’ll talk about one very big exception tomorrow

Review

At the end of this lesson, you should be able to
• Explain what “business logic” is

• Describe the fundamental differences between the
three layers of the controller, service, and repository
layers in a C-S-R architecture

• Explain the difference between “horizontal” and
“vertical” scaling

• Know what someone is talking about when they say
“microservices”

20

Learning objectives for this lesson

• By the end of this lesson, you should be able to…
• Explain what made single-threaded web servers an

attractive alternative to connection-pool-based web
servers

• Identify a few pitfalls of writing single-threaded
applications with cooperative concurrency

• Understand the difference between programming with
callbacks, “classic” promises, and async/await

• Look at code diffs on GitHub and glean insights

	Slide 1
	Slide 2: CS 4530: Fundamentals of Software Engineering Module 3, Lesson 2 Architecting Simple Web Servers
	Slide 3: ???
	Slide 4: Learning Goals for this Lesson
	Slide 5: This example is silly
	Slide 6: State and statelessness
	Slide 7: State and statelessness
	Slide 8: Three parts of a web server
	Slide 9: Service interface
	Slide 10: Service interface
	Slide 11: Testing
	Slide 12: Web Applications are Distributed Systems
	Slide 13: Scaling & the database bottleneck
	Slide 14: Scaling & the database bottleneck
	Slide 15: Scaling & the database bottleneck
	Slide 16: Microservices
	Slide 17: Microservices
	Slide 18: Microservices
	Slide 19: Review
	Slide 20: Review
	Slide 21: Learning objectives for this lesson

